81.1 F
Naperville
Monday, May 20, 2024

Science Corner – The biggest ice cube in the world

-

January’s column was about snowflakes. This one is about an ice cube, a huge one called – wait for it – IceCube. Each side is 1 kilometer, 1000 meters, so the volume is one billion cubic meters and it weighs a billion tons. Calculations are easy in the metric system!

Scientists wanted a massive block of clear ice to detect mysterious neutrinos coming from far away in the universe. These particles interact with matter so rarely that 99.9999 percent pass right through that block leaving no trace. But one-in-a-million hits a quark, much smaller than a proton, creating a shower of new particles which make flashes of light in the ice.

The scientists did not have to make a giant ice cube. They found one under the snow at the South Pole. The ice there is more than 2.5 km deep, and they chose a cubic kilometer with no air bubbles and little dust. But they had to get 5000 light detectors 1.5 – 2.5 km down in the ice and connected to the surface with cables.

The ingenious solution was to drill 60 cm diameter holes with hot water. About 400,000 gallons of oil were used to heat water and melt vertical columns of ice. The water did not refreeze for several days, enough time to lower cables with photomultipliers every 60 m. Starting in 2004 that took seven years. The detectors will be stuck in the ice for a thousand years – or less if the Antarctic melts faster.

It’s dark down there in the ice, but sometimes a neutrino makes a light flash bright enough to be detected through the clear ice by hundreds of photomultipliers. From the pattern of the signals, their brightness and time, the energy of the neutrino and its direction can be calculated.

Some neutrinos had energies of more than 1000 trillion electron volts (TeV). That is 150 times the energy of the protons in CERN’s Large Hadron Collider. Those neutrinos must have come from the deep cosmos.

In September 2017, an ultrahigh energy neutrino was detected from a gamma-ray source called a “blazar.” Alerts were sent to astronomers who saw bursts of gamma rays and X-rays from the same spot in the sky, confirming its origin. That neutrino had been travelling through space at 186,000 miles per second for 4.6 billion years before its death in a glorious flash of light.

Neutrinos from the center of the sun and from a supernova explosion had been detected before, but this was really the birth of neutrino astronomy.

Stay Connected!

Get the latest local headlines delivered to your inbox each morning.
SUBSCRIBE
- Advertisement -
Michael Albrow
Michael Albrow
Michael Albrow is a scientist emeritus at Fermilab, Batavia and a member of Naperville Sunrise Rotary. Born in England, Mike lived in Switzerland and Sweden before settling in the U.S. 25 years ago.
spot_img

LATEST NEWS

DON’T MISS OUT!
GET THE DAILY
SQUARE-SCOOP
The latest local headlines delivered
to your inbox each morning.
SUBSCRIBE
Give it a try, you can unsubscribe anytime.
close-link

Stay Connected!

Get the latest local headlines delivered to your inbox each morning.
SUBSCRIBE
close-link